

使用高分辨 GC/Q-TOF 分析土壤和 燕麦植株中的 PFAS 和其他环境 污染物

作者

Luann Wong, Gabrielle Black 和 Thomas Young 加州大学戴维斯分校土木与环 境工程系

Sofia Nieto, Matthew Giardina, Matthew Curtis 和 Tarun Anumol 安捷伦科技有限公司

摘要

土壤是全氟烷基和多氟烷基化合物 (PFAS)^[1] 的主要环境储存库之一,土壤中存在的 PFAS 可能导致地下水和食品污染。目前的 PFAS 方法通常只能检测 40 至 80 种 PFAS,而且根据质量平衡研究,许多环境样品中的 PFAS 含量被大大低估^[2,3]。此外,液相色谱/质谱 (LC/MS) 在分析某些挥发性 PFAS 方面存在明显局限性,应考虑将气相色谱/质谱 (GC/MS) 作为重要的互补技术。

本研究介绍了使用 Agilent 7250 气相色谱/四极杆飞行时间质谱仪 (GC/Q-TOF) 提取 和分析土壤和植物中 PFAS 的不同方法。使用靶向筛查方法,根据这些污染物的精确 质量个人化合物数据库与谱库 (PCDL),检测 PFAS 和其他环境污染物。使用非靶向 筛查和广泛的单位质量 NIST23 谱库,还在土壤和植物样品中鉴定出更多的污染物, 包括多氯联苯 (PCBs)、多溴联苯醚 (PBDEs) 和阻燃剂。

前言

PFAS 是一种持久性合成有机污染物,可能发生生物累积^[4]。 美国国家环境保护局 (EPA) 制定的 PFAS 物质清单目前包括 近 8000 种 PFAS 化学物质^[5],从挥发性 PFAS(如普遍存在 的氟调聚醇 (FTOHs))到长链 PFAS(包括最常检出的全氟辛 酸 (PFOA) 和全氟辛烷磺酸 (PFOS))。虽然长链 PFAS 正逐步 被淘汰,但由于普遍认为挥发性更强的 PFAS 毒性更低,因 此短链 PFAS 的生产正在不断增加。这些短链 PFAS(如 6:2 FTOH)更难使用已建立的方法通过 LC/MS 检测到,而且最近 的研究表明,它们具有相同的毒性^[6,7]。

土壤是 PFAS 和其他许多持久性环境污染物的重要储存库,可能导致地下水、大气和生物群受到污染。因此,为了更好地了解这些污染物的来源和迁移情况,使用 Agilent 7250 GC/Q-TOF 对土壤和植物提取物进行了分析。

为了尽可能提高 PFAS 检测的灵敏度,采用了基于 PFAS 精确 质量谱库的靶向筛查方法。本研究中使用的 PFAS PCDL 包括 超过 150 张电子轰击电离 (EI) PFAS 谱图以及保留时间 (RTs) 和保留指数 (RIs) 信息,具体信息可参阅另一篇应用简报⁸¹。

除 PFAS 外,使用靶向和非靶向筛查工作流程,还在土壤和植物中鉴定出许多持久性污染物。这些污染物包括农药、多环芳烃 (PAHs)、PCBs、PBDEs 和阻燃剂。

实验部分

样品采集

土壤和燕麦植株采集自加利福尼亚州的两块田地(F1和F2), 这两块田地都曾接受过生物固体处理。在施用生物固体前采 集土壤样品(标记为 PreA,代表施用生物固体前)。在用堆肥 (Comp)、堆肥和石灰(C&L)处理小块地之前,还对经认证的 USDA 有机(Org)田地进行了采样,并采集了堆肥。在收割时 (Hvst)也对土壤进行了采样。植物与土壤样品在相同的区域 采集。

样品前处理

土壤和植物样品或用二氯甲烷 (DCM) 萃取以进行液体进样, 或进行顶空固相微萃取 (HS-SPME)。对于 DCM 萃取,称取 2g 土壤加入 50 mL 玻璃离心管中,并加入 5 mL DCM。使 用 Heidolph Multi Reax 试管振荡器以速度 5 涡旋含有样品 的 50 mL 离心管 5 min,并以 3000 rpm 离心 5 min。将约 0.5 mL 上清液提取物转移至 2 mL 自动进样器样品瓶中。将包 括茎、叶、种子和种荚的完整植物样品切成 2-5 mm 小段。 然后,使用二氯甲烷以与土壤相同的方式萃取 2 g 植物样品。 每组还制备了方法空白样品。

对于 HS-SPME,将土壤 (2 g)和切碎的植物材料 (1 g)转移至 20 mL 顶空样品瓶中,分别加入 2 mL 或 3 mL 去离子水。

SPME 条件

使用 Agilent PAL 3 CTC 自动进样器进行 HS-SPME。测 试了四种不同的纤维头 (Agilent 100 µm PDMS、95 µm CWR/PDMS、65 µm DVB/PDMS 和 80 µm DVB/CWR/PDMS, 部件号 5191-5878),并优化了 SPME 条件。在 300 °C 下将纤 维头老化 5 min。将样品平衡 10 min,并将 SPME 纤维头插 入样品瓶顶空。以 300 rpm 在 50 °C 下萃取 35 min(编程为 10 秒开,2 秒关循环),然后在 250 °C 下在 GC 进样口脱附 7 min。GC 进样口配备了用于 SPME 分析的 0.75 mm 内径衬 管和耐磨 Merlin 微密封隔垫。

数据采集

采用 Agilent 7250 GC/Q-TOF 系统进行 GC/MS 分析。所有数 据都在全谱采集模式下采集。使用两种不同的 GC 色谱柱采集 数据。DB-624 是一种中等极性 GC 色谱柱,为适合 GC 分析 的 PFAS 化合物提供了理想的保留和分离性能。使用该色谱柱 和 PFAS PCDL 进行 PFAS 筛查。还使用了非极性 DB-5ms 色 谱柱,以充分利用 NIST23 谱库中具有 EI 谱图的所有化合物 的可用 RI 信息。数据采集参数见表 1。

表1.数据采集参数

	Agilent DB-5ms	Agilent DB-624						
MS	Agilent 7250 GC/Q-TOF							
GC	Agilent 8890 GC							
进样口	多模式进样口,安捷伦超高惰	生 4 mm 衬管,单锥,带玻璃毛						
进样口温度	70 °C 保持 0.01 min,然后以 3	800 °C/min 升至 250 °C						
进样量	1 μL							
色谱柱	Agilent J&W DB-5ms 超高惰 性柱 (UI), 30 m × 0.25 mm, 0.25 μm	Agilent DB-624 超高惰性柱, 30 m × 0.25 mm, 1.4 µm						
柱温箱升温程序	35 °C 保持 2 min, 以 7 °C/min 升至 210 °C, 以 20 °C/min 升至 300 °C, 保持 4 min	30°C 保持 2 min, 以 3°C/min 升至 75°C, 以 2°C/min 升至 110°C, 以 10°C/min 升至 210°C, 以 20°C/min 升至 240°C, 保持 2 min						
色谱柱流速	1.2 mL/min,恒流模式	1 mL/min,恒流模式						
载气	氦气	·						
传输线温度	250 °C							
四极杆温度	150 °C							
离子源温度	200 °C							
电子能量	70 eV							
发射电流	随时间段变化,0.01−5 µA							
谱图采集速率	5 Hz							
质量数范围(调谐)	50-1200 m/z							

数据处理

在 Agilent MassHunter 未知物分析软件(版本 12.1)中进行 非靶向工作流程,涉及 SureMass 色谱解卷积和 NIST23 EI 谱 库检索。使用 RIs 和精确质量信息确认化合物鉴定结果。使用 MassHunter 定量分析软件(版本 12.1)的 GC/Q-TOF Screener 工具和精确质量谱库进行农药和 PFAS 的疑似物筛查。

结果与讨论

PFAS 的特征 EI 碎裂

复杂基质中 PFAS 筛查的有效方法之一是疑似物筛查方法, 因为它可以实现高灵敏度和特异性检测。使用高分辨精确 质量 GC/MS 时,通过精确质量谱库来筛查大量目标化合物 (理论上是无限的),可以极大地促进这种方法。因此,本研 究使用了之前创建的精确质量 GC/MS PCDL^[6],涵盖 100 多 种挥发性和半挥发性 PFAS 化合物,进行土壤和植物样品中 的 PFAS 筛查。PCDL 中的 PFAS 化合物类别包括全氟烷基 碘化物 (PFAIs)、氟调聚碘化物 (FTIs)、氟调聚醇 (FTOHs)、 氟调聚烯烃 (FTOs)、氟调聚丙烯酸酯 (FTACs)、氟调聚甲基 丙烯酸酯 (FTMACs)、氟调聚羧酸 (FTCA)、氟调聚不饱和羧 酸 (FTUCA)、全氟烷烃磺胺类 (FASA) 等,其中许多只适合 GC/MS 分析。与化学电离相比,电子轰击电离 (EI) 是一种更 通用的技术,因此选择 EI 模式用于 PFAS PCDL。EI 涵盖更广 泛的 PFAS 化合物类别,使用户能够在同一数据文件中轻松筛 查其他污染物。虽然许多 PFAS 化合物可在 EI 中高度碎裂, 但大多数化合物仍具有特定的碎片离子,可通过 GC/O-TOF 疑似物筛查算法或手动选择作为目标离子或定性离子。不同 PFAS 化合物类别的一些典型的特定碎片离子见表 2。

表 2. EI 中挥发性 PFAS 的特征碎片

	中性丢失	PFAS 类别;相对于基峰离子(给定 PFAS 类别中强度最大的离子)的百分比											
特征碎片	(m/z)	FTOH	PFAI	FTI	FTAC	FTMAC	FT0	PFAL	FASA				
[M]+	0	-	40	100	30	90	-	-	-				
[M-I]+	126.9045	-	100	-	-	-	-	-	-				
[M-H ₂ O-HF]+	38.0168	100	-	-	-	-	-	-	-				
[M-CHO-F]+	48.011	-	-	-	-	-	-	90	-				
[M-H ₂ O-F-HF-C ₂ H ₂]+	83.0308	80	-	-	-	-	-	-	-				
[M-H ₂ O-2F]+	56.0074	70	-	-	-	-	-	-	-				
[M-C ₂ F ₅]+	118.992	-	-	50	-	-	-	-	-				
[M-HF-I]+	146.9107	-	-	50	-	-	-	-	-				
[M-H ₂ O-CF ₃]+	87.0058	30	-	-	-	-	-	-	-				
[M-H ₂ O-2F-CF ₃]+	126.0026	30	-	-	-	-	-	-	-				
[M-F]+	18.9984	6	-	-	10	5	5	-	1				
[M-CHO-2F]+	66.9995	-	-	-	-	-	-	25					
[M-SO ₂ -CH ₃]+	78.9854	-	-	-	-	-	-	-	25				
[M-H ₂ O-CF ₂]+	68.0074	25	-	-	-	-	-	-	-				
[M-HF]+	20.0062	20	-	-	-	-	-	-	-				
[M-2F-CF ₃]+	106.992	-	-	-	-	-	20	-	-				
[M-H]+	1.0078	15	-	1	-	-	-	-	-				
[M-CH ₃]+	15.0235	-	-	-	-	10	-	-	5				
[M-H-HF]+	21.0141	15	-	-	-	-	-	-	-				
[M-F-2HF]+	59.0109	15	-	-	-	-	-	-	-				
[M-H ₂ O-F]+	37.009	15	-	-	-	-	-	-	-				
[M-CF ₃ -HF]+	89.0014	-	-	10	-	-	5	-	-				
[M-F-HF]+	39.0046	-	-	-	-	-	10	-	-				
[M-NH ₂ SO ₂]+	79.9806	-	-	-	-	-	-	-	10				
[M-C ₂ H ₃ -2F]+	65.0203	-	-	-	-	-	10	-	-				
[M-CH0]+	29.0027	-	-	-	-	-	-	5	-				
[M-SO ₂ -H]+	64.9697	-	-	-	-	-	-	-	5				
[M-SO ₂ -F]+	82.9603	-	-	-	-	-	-	-	5				
[M-SO ₂ -CF ₃ -HF]+	152.9633	-	-	-	-	-	-	-	5				

土壤分析的 SPME 纤维头选择

评估了 4 种不同 SPME 纤维头从土壤中萃取挥发性化合物 (包括 PFAS)的能力: PDMS、CWR/PDMS、DVB/PDMS 和 DVB/CWR/PDMS。使用从相同位置采集的土壤 (2 g)样品进 行测试,与 2 mL 水混合,并在相同的 SPME 条件下运行。 各种测试的纤维头生成的总离子流色谱图 (TIC) 如图 1 所示。 DVB/PDMS 和 DVB/CWR/PDMS 纤维头均产生了大量的峰, 表明能够提取各种化合物。 还评估了各纤维头的可识别峰数量(表 3)。DVB/PDMS 和 DVB/CWR/PDMS 的谱库匹配结果数量相当,但 DVB/CWR/ PDMS 略高一点。因此,选择其进行进一步分析。

表 3. SPME 纤维头性能。SureMass 解卷积算法生成的组分数量以及 NIST23 谱库匹配结果数量(谱库匹配得分临界值 75)

纤维头类型	组分数量	匹配结果数量				
PDMS	422	228				
CWR-PDMS	514	419				
DVB-PDMS	687	560				
DVB-CWR-PDMS	683	570				

图 1. 处理土壤样品时的 SPME 纤维头性能

使用精确质量 PFAS 谱库检测土壤和植物样品中的挥发性 PFAS

使用精确质量 PFAS PCDL 对 PFAS 进行 GC/Q-TOF 检测时, 使用了中等极性 DB-624 GC 色谱柱(更多详细信息请参见 表 1)。

使用分别涉及 GC/Q-TOF Screener 和未知物分析软件的靶向 和非靶向方法鉴别土壤和植物样品中的 PFAS。使用非靶向分 析方法的一个优势是,可以使用精确质量谱库以及全面的大型 公共谱库(如 NIST)同时筛查污染物,无需再进样。 基于 PCDL 的靶向疑似物筛查方法有几个优势,该方法完全在 MassHunter 定量分析软件中进行,之前已有详细介绍^[9,10]。该 方法的一些主要优点包括高灵敏度以及数据分析方法设置和结 果验证的高度灵活性和自动化。验证所需的手动操作非常少, 可轻松获得报告。这些优势为用户提供了一种高效、省时的靶 向分析工具。

在分析 SPME 数据时,检测到一些 PFAS 化合物。使用 GC/Q-TOF Screener 在一些土壤和植物样品中鉴定出的化合物 示例见图 2。该化合物是一种挥发性 6:2 氟调聚醇,经常在环 境基质中检测到。由于该化合物的含量在痕量级,在非靶向方 法中并未检测到。

图 2. 使用基于 SPME 和 PFAS PCDL 的筛查方法从土壤中检测到的 6:2 FTOH。上面的镜像图显示了解卷积化合物谱图与 PFAS PCDL 谱图。下面的镜像图仅显示目标 离子和定性离子 当进行非靶向分析时,色谱解卷积使用 SureMass 算法,该算 法针对高分辨 EI 数据进行了专门优化,以确保谱图提取的高 速、灵敏度和完整性。虽然疑似物筛查方法提供了高灵敏度, 能够检测更多的 PFAS 化合物,但在两种方法中均检测到一种 高丰度的 PFAS(图 3A 和 3B)。 土壤和植物样品中鉴定出的所有 PFAS 化合物都是通过匹配 PFAS PCDL 检测到的。

图 3. 在靶向筛查 (A) 和未知物分析软件中基于非靶向解卷积的方法中 (B),使用 PFAS PCDL 从 DCM 土壤提取物中鉴定出的 PFAS(乙基全氟丁基醚)

7

总体而言,HS-SPME 方法萃取 PFAS 效果更好,可鉴定出更 多挥发性 PFAS 化合物。根据标准品进样估算检测到的 PFAS 的含量(总结见表 4),但尚未测定土壤和植物样品中的实际 浓度。

土壤和燕麦植株中其他污染物的鉴定

针对 DCM 提取物和 SPME 鉴定了土壤和植物样品中的其他污染物。然而,虽然 SPME 可以更好地检测挥发性化合物,但在 DCM 提取物中检测到更多的环境污染物,包括 PCBs、PBDEs、 农药、PAHs 和阻燃剂,因此将成为进一步讨论的重点。

使用 DB-5ms UI 色谱柱进行分离,以便能够使用广泛的 NIST23 谱库中的 RI 值,从而通过使用谱库匹配结果的 RI 罚分功能增加化合物鉴定的可信度。该色谱柱固定相也与 GC/Q-TOF 农药 PCDL 兼容,可考虑用于筛查农药和 PAHs 的 GC/Q-TOF 精确质量 EI 数据。经过快速预筛查,将鉴定出的 污染物按污染物类别分组,并分别进行处理。 使用未知物分析和 NIST23 谱库,非靶向方法鉴定出 PCBs 和 PBDEs。为了在搜索单位质量谱库时消除基于精确质量 EI 数 据的假阳性结果,使用了未知物分析 ExactMass 工具。图 4A 对该工具进行了进一步详细介绍,给出了在土壤提取物中检测 到的一种 BDEs 的示例。

在土壤提取物中检测到 20 种不同的 PCBs 和 PBDEs(图 4B)。 唯一检测到这组污染物 (BDE-47) 的燕麦植株提取物是在田地 F2 中生长的。

请注意,由于 PCBs 和 PBDEs 的沸点较高,SPME 未检测到 它们。

在土壤提取物中鉴定出的另一组主要污染物是农药,使用基于农药 PCDL 的 GC/Q-TOF Screener 工作流程可快速、轻松 地检测到这些污染物。基于 RT 的初始版本的农药 PCDL 增加 了 Rls,以便能够在 Screener 工作流程中使用 PCDL 以及使用 不同色谱方法采集的数据。根据 SANTE 指南设置 GC/Q-TOF Screener 方法。不过,扩大了 RT 窗口,以考虑到使用不同的 色谱方法时产生的额外 RT 误差。

表 4. 使用精确质量 PFAS PCDL 和疑似物筛查方法,通过 HS-SPME 从土壤和植物中检测到的 PFAS。显示了估算量(以柱上量 pg 表示)

						植物样品								
化合物	RT	定量离子	F1 PreA	F1 Hvst	F2 Hvst	C&L Hvst	Comp Hvst	Org Hvst	Org Comp	F1	F2	Comp	C&L	Org
乙基全氟丁基醚	4.4	218.9851	150.2	-	-	-	-	-	-	-	-	-	-	-
6:1 氟调聚醇	20.94	130.9915	-	2	-	-	-	-	-	2.2	-	-	-	-
6:2 氟调聚醇	23.59	296.0054	-	7.5	0.3	-	-	-	6.9	2.5	-	-	-	-
N-甲基全氟辛烷磺酰胺	43.1	93.9957	0.3	3.4	0.9	2.1	0.4	1.2	0.9	0.2	-	-	-	-

A 样品:土壤,F1

Components								- 4 X	Ion Peaks			🚽 🕂 🗙	Spectrum								👻 🕂 🗙
Component RT	Compou	und Name		Match Factor	Best Hit	Formula	Compone RI	Librar ^ RI	Component F 읟 x10 7	RT: 32.7404	Т	cl	Componen 읟 x10 2	t RT: 32.740	4						
32.6509	Docosar	ne, 11-butyl-		80.3	\checkmark	C26H54	2796	2775	0 1.2-	/ \	C	mponent	1	DDE	00			403.7	866		
32.7404	2,2',4,4',	5,-Pentabromodi	phenyl ether	92.8	\checkmark	C12H5Br5O	2812	2833	1-	/ \	40	3.7866	0.9-	BDE-	99					FOR	0011
32.7480	Squalen	e		94.4	\checkmark	C30H50	2814	2827 🗸	0.8-		40	5.7847	0.8-							000	.0211
<								>	0.6-		56	3.6211	0.7-							C12 H58	3;8;8;Br]2 O
Exact Mass								- 4 X	0.4 -		56	5.6189	0.5-								
Source Ion		Exact	Mass		-			^	0.2-	•	56	1.6231	0.4-	74 0154							
(m/z)	-	Mass (m/z)	(ppm)	Fragment	Form	JIa	Unique		0-	22.75			0.2-		202.89	15 29	6.8731				
296	.8731	296.8732	-0.43	C11 H5 B	[81Br]			A	cquisition Ti	ime (min)		0.1-		. lui	الد ا	ılı i		48	3.7060	
401	.7884	401.7885	-0.14	C12H5Br3	0				Molecular Str	ructure		→ ₽ X	-0.1-		a the second of the second of the second	۳¥۳ ·	325.0	377.0	4	84.0	
403	.7866	403.7865	0.42	C12 H5 B	2 [81]	Br] O							-0.2-		137.0	:	297.0				
404	.7895												-0.3-	74.0	202.0)					ľ
405	.7847	405.7844	0.63	C12 H5 B	[81Br]2 0					Br		-0.5-								
406	.7877								Br.	~			-0.6-							57	54.0
407	.7830	407.7824	1.45	C12 H5 [8	1Br]3	0			∥ ``		Ĩ		-0.8-								
561	.6231	561.6231	0.01	C12 H5 B	4 [816	Br] O			^ι	\checkmark	\nearrow		-0.9-								
563	.6211	563.6211	0.01	C12 H5 B	3 [81]	Br]2 O							-1-					404	l.0		
565	6189	565.6190	-0.26	C12 H5 B	2 [81]	Br]3 O				Br	Br		-1.2								
< 567 <	.6165	567.6170	-0.88	C12 H5 B	181Br	14 0		>						50 100	150 200	250	300 35	i0 400	0 450	500 55 Mass-t	0 600 650 o-Charge (m/z)

图 4. 使用 NIST23 从土壤 DCM 提取物中检测到的 PCBs 和 PBDEs。(A) 在收割时从 F1 采集的土壤样品中检测到的 BDE 示例。ExactMass 表(左下图)显示了精确 质量碎片离子与单位质量谱库的结果匹配程度,从而进一步确认了化合物身份。当 m/z 与谱库匹配结果的分子式相对应时,镜像图中将突出显示最具选择性和丰度 最高的离子。组分色谱图中的箭头指向已鉴定出的组分 EICs。(B) 柱状图显示了鉴定出 PCB 和 PBDE 的所有土壤样品中它们的响应 由于 DCM 萃取方法未专门针对从植物基质中回收农药进行优化,因此仅处理了土壤样品。在土壤提取物中共检测到超过50 种农药(图 5 和表 5)。

在堆肥和堆肥处理的土壤中检测到大量农药,有机土壤提取物 中也鉴定出少量农药。另一个有趣的现象是,总是在相同的土 壤样品中检测到杀虫剂氟虫腈亚砜和氟虫腈砜。同时,丙环 唑、腈菌唑和苯醚甲环唑等康唑类杀菌剂大多在堆肥和堆肥处 理的土壤中检出。

样品:土壤,F1

	Screening - [Result Review]													×
	File	Home												
√ /!	S 🗙 😽	argets Suspects APrevious Sample S_F1_hvs	t_loc1	 Next Sa 	mple	32	<u>/</u> 54	768	Total: 854					
Status	Promoted	Compound Name	CAS#	Formula	R.T.	R.T. Diff.	Fina	Match Score	Target Ion	Mass Accuracy	# of Verified Io	ns	Area	He 🔨
Â		Naphthalene	91-20-3	C10H8	14.137	0.472		89.6	128.0621	0.3302		4	21337.0	
\checkmark		p-Chloroaniline	106-47-8	C6H6CIN	14.437	0.379		99.6	127.0183	1.0821		6	68124.8	
\checkmark		DiuronMetabolite[3,4-Dichlorophenylisocyanate]	102-36-3	C7H3Cl2NO	16.558	0.281		99.9	186.9586	0.7109		6	116757.5	
\checkmark		Biphenyl	92-52-4	C12H10	18.048	0.198		99.8	154.0777	-0.7856		5	17806.7	
\checkmark		3,4-Dichloronitrobenzene	99-54-7	C6H3Cl2NO2	18.157	0.277		78.6	190.9535	-1.8798		6	1086.6	
\checkmark		3,4-DCA / 3,4-Dichloroaniline	95-76-1	C6H5CI2N	18.890	0.204		99.3	160.9794	-1.0720		6	51467.6	
\checkmark		Acenaphthylene	208-96-8	C12H8	19.358	0.184		99.2	152.0621	-1.1827		5	12347.6	~
<														>
+ Decon	voluted Scan	(16.557 min) S_F1_hvst_loc1.D 62.0151 70.0777 79.4817 62.0151 79.4816	88.0182 96.9 93.4790	839		123.9949	135.080)3	158.96	³⁶ 168.1144 	186	9588		
	35 40	45 50 55 60 65 70 75 80	85 90 95	100 105 110	115	120 125	130 135	140 145	150 155 16	0 165 170	175 180 185	190	195 200 2 Mass-to-Charg	05 ge (m/z)
+ Decon	voluted Scan	(16.557 min) S_F1_hvst_loc1.D (Target/Qualifier ions	s only)		1	22.0040			150.063	c	106	henn		
Count						(0.81)			(-0.74)	0	(0.	71)		
												1		
	40 45	50 55 60 65 70 75 80 85	90 95 10	0 105 110 11	15 120	125 130	0 135 1	40 145 15	0 155 160	165 170 1	175 180 185	190	195 200 2	205
													Mass-to-Charg	ge (m/z)

图 5. 使用农药 PCDL 筛查土壤提取物中的农药时,MassHunter 定量分析软件的 GC/Q-TOF Screener 窗口

表 5. 使用精确质量农药 PCDL 和疑似物筛查方法从土壤提取物中检测到的农药

化合物名称	RT	∆ RT *	谱库匹配得分	F1 PreA	F1 Hvst	F2 Hvst	C&L Hvst	Comp Hvst	Org Hvst	Org Comp
1,2,4-三氯苯	14.62	0.17	98.1	x						
敌草隆代谢物	16.56	0.28	99.9	x	x	х	х	х		х
1,2,3,5-四氯苯	16.98	0.32	90.7	x						
2,4,6-TCP/2,4,6-三氯苯酚	17.44	0.25	99.3				х	x	x	痕量
尼古丁	17.56	0.05	97.9							х
氯酚奴隆	18.71	0.22	99.7			x				х
3,4-DCA/3,4-二氯苯胺	18.88	0.21	99.9	x	x	x				
五氯苯	20.42	0.35	99.4	x	x					х
DEET/避蚊胺	21.46	0.22	82.1	痕量	痕量	痕量	х	x	痕量	х
2,3,4,5-四氯苯甲醚	22.74	0.32	99.8	x						х
溴苯腈	23.14	0.09	99.9	痕量			х	x		
HCB/六氯苯	23.52	0.36	99.7	x	x	x	痕量	x	x	х
氯硝胺	23.84	0.16	97.8		x	х				х
灭草灵 (MCC)	24.27	0.10	85.6	x	x	x				
PCP/五氯酚	24.27	0.24	99.7				痕量	х		х

化合物名称	RT	∆RT*	谱库匹配得分	F1 PreA	F1 Hvst	F2 Hvst	C&L Hvst	Comp Hvst	Org Hvst	Org Comp
嘧霉胺	25	0.10	82.5					痕量		х
六氯	25.1	0.03	98.5							х
五氯苯胺	25.74	0.24	99.7	x	x		x	x		х
氟硫草定	26.85	0.40	93.7	x	x	х	х	x		х
蒽醌	27.59	0.05	99.7	x	х	х	х	x	x	х
4,4'-二氯二苯甲酮	27.86	0.02	80.3	x						х
氟虫腈亚砜	28.13	0.43	99.7			x	痕量	x		х
嘧菌环胺	28.27	0.05	99.1				痕量	x		х
敌草隆	28.28	0.31	78.1				痕量	x		痕量
氟吡菌酰胺	28.49	0.18	93				x	x		х
氯杀螨	28.99	0.21	92.2	x	x	х				
反式氯丹(γ-氯丹)	28.82	0.03	99.7	x	x	x	x	x	x	х
三氯生	28.85	0.03	99.3	x	x	х		x		х
顺式氯丹(α-氯丹)	29.06	0.04	99.9	x	x	x	x	x	x	х
反式九氯	29.11	0.07	99.9	x	x	x	x	x	x	х
氟酰胺	29.23	0.11	85.2					x		х
咯菌腈	29.27	0.18	99.6							х
狄氏剂	29.5	0.05	84.6	x	痕量	痕量				
p,p'-DDE	29.42	0.04	99.2	x	x	х	x	x	x	х
恶草酮	29.43	0.14	97.7				x	x		х
o,p'-DDD(米托坦)	29.52	0.07	99.9	x	x	х	痕量	x	x	
氟虫腈砜	29.34	0.33	98.6	痕量		x	痕量	x		х
腈菌唑	29.48	0.11	98.8					x		х
p,p'-DDD	30.03	0.02	99.5	x	x	x	x	x	x	痕量
顺式九氯	30.03	0.04	99.9	x	x	x	痕量	痕量		х
唑草酮	30.32	0.13	98.8			x				
辛酰溴苯腈	30.39	0.06	88.4	x			x	痕量		
丙环唑I	30.43	0.11	96.4				x	x	痕量	х
杀草敏 (PAC)	30.44	0.06	91.5					x		
丙环唑Ⅱ	30.5	0.04	96				x	x	痕量	х
戊唑醇	30.7	0.03	92.7				x	x		х
氯杀螨砜	30.7	0.39	89.6		痕量	痕量	x	x		х
联苯菊酯	31.08	0.09	98.6	痕量	x	痕量	x	x	x	х
顺式氯菊酯	32.19	0.00	99.1	x	x	x	痕量	x	x	х
反式氯菊酯	32.28	0.01	81			x			痕量	痕量
苯醚甲环唑Ⅱ	34.09	0.01	88.9					痕量		х

* 根据 RI 重新计算 ∆RT。

痕量表示谱库匹配因子低于 75。

PAHs 也纳入了农药 PCDL,并在同一工作流程中与农药一起 进行筛查。PAHs 大多在土壤提取物中检出。然而,在大多数 植物样品中也鉴定出菲和荧蒽。考虑到菲和荧蒽是土壤中检测 到的丰度最高的 PAHs,这并不意外。

在土壤和燕麦植株中鉴定出的一类主要污染物是阻燃剂。这些 化合物中大多数的精确质量质谱图已包含在农药 PCDL 中。为 了更全面地覆盖这组污染物,直接从未知物分析软件中将基 于 NIST23 谱库的未知物分析中发现的、农药 PCDL 中缺少的 几种阻燃剂添加到定量方法中,从而与其他目标物一起进行筛 查。对于这组污染物,在土壤和植物提取物之间观察到极其相 似的响应(图 7)。

在土壤和植物样品中鉴定出的丰度最高的阻燃剂是磷酸三丁 酯、磷酸三(2-氯丙基)酯和磷酸三(3-氯丙基)酯,都是常用的磷 类阻燃剂。

图 6. 使用精确质量农药 PCDL 和疑似物筛查方法从土壤 DCM 提取物中检测到的 PAHs。柱状图显示了 PAH 峰面积

图 7. 使用包括精确质量 PCDL 和 NIST23 谱库的组合筛查方法从土壤和植物 DCM 提取物中检测到的阻燃剂。柱状图显示了土壤 (S) 和植物 (P) 提取物中的阻燃剂响应

结论

环境基质中的 PFAS 分析是一项具有挑战性的工作。在本应用 简报中,介绍了从土壤和植物中提取 PFAS 的不同方法以及下 游数据处理工作流程。本文建议的土壤和植物中挥发性 PFAS 分析更有效和更灵敏的方法是 HS-SPME 结合基于 PFAS 精确 质量谱库和高分辨精确质量 GC/Q-TOF 的疑似物筛查。

此外,还筛查了土壤和植物提取物中的其他污染物,并使用靶向、非靶向和组合方法鉴定出了包括 PCBs、PBDEs、PAHs、农药和阻燃剂在内的各种污染物。

参考文献

- Brusseau, M. L.; Anderson, R. H.; Guo, B. PFAS Concentrations in Soils: Background Levels versus Contaminated Sites. *Sci.Total Environ.* **2020**, Oct 20; 740, 140017. DOI: 10.1016/j.scitotenv.2020.140017
- Lin, H.; Taniyasu, S.; Yamazaki, E.; Wu, N.; Lam, P. K. S.; Eun, H.; Yamashita, N. Fluorine Mass Balance Analysis and Per- and Polyfluoroalkyl Substances in the Atmosphere. *J. Hazard. Mater.* 2022, Apr 28; 435, 129025. DOI: 0.1016/ j.jhazmat.2022.129025
- Spaan,K.;Van Noordenburg,C.;Plassman,M.;Schultes,L.;S haw,S. D.;Berge,r M.;Heide-Jørgensen,M.P.;Rosing-Asvid, A.;Granquist,S.;Dietz,R.;et al. Fluorine Mass Balance and Suspect Screening in Marine Mammals from the Northern Hemisphere. *Environ.Sci.Technol.* **2020**, Mar 12, *54*(7), 4046–4058. DOI: 10.1021/acs.est.9b06773
- Schildroth, S.; Rodgers, K. M.; Stynar, M.; McCord, J.; Poma, G.; Covaci, A.; Dodson, R. E. Per-and Polyfluoroalkyl Substances (PFAS) and Persistent Chemical Mixtures in Dust from U.S. Colleges. *Environ.Res.*2021, Apr 15, 206, 112530. DOI: 10.1016/j.envres.2021.112530
- Williams, A. J; Gaines, L. G. T.; Grulke, C. M.; Lowe, C. N.; Sinclair, G. F. B.; Samano, V.; Thillainadarajah, I.; Meyer, B.; Patlewicz, G.; et al. Assembly and Curation of Lists of Per- and Polyfluoroalkyl Substances (PFAS) to Support Environmental Science Research. *Front.Environ.Sci.* 2022, Apr 5, 10, 1–13. DOI: 10.3389/fenvs.2022.850019

查找当地的安捷伦客户中心:

www.agilent.com/chem/contactus-cn

免费专线: 800-820-3278,400-820-3278(手机用户)

联系我们: LSCA-China_800@agilent.com

在线询价: www.agilent.com/chem/erfq-cn

www.agilent.com

DE45375629

本文中的信息、说明和指标如有变更,恕不另行通知。

© 安捷伦科技(中国)有限公司,2024 2024 年 5 月 6 日,中国出版 5994-7351ZHCN

- Sunderland, E. M.; HuHu, X. C.; Dassuncao, C.; Tokranov, A. K.; Wagner, C. C.; Allen, J. G. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health Effects. *J. Expo. Sci.Environ. Epidemiol.* **2019** Mar 29, (2), 131–147. DOI: 10.1038/s41370-018-0094-1
- Rice, P. A.; HuAungst, J.; Cooper, J.; Bandele, O.; Kabadi, S. V. A Comparative Analysis of the Toxicological Databases for 6:2 Fluorotelomer Alcohol (6:2 FTOH) and Perfluorohexanoic Acid (PFHxA). *Food Chem.Toxicol.*2020 Apr, *138*, 111210. DOI: 10.1016/j.fct.2020.111210
- Wong, L.; Black, G.; Young, T.; Nieto, S. 用于环境样品 PFAS 分析的精确质量谱库以及使用 GC/Q-TOF 鉴定饮用水中 污染物的工作流程, *安捷伦科技公司应用简报*,出版号 5994-6966ZHCN, **2023**
- 9. Van Gansbeke, W.; Albertsdóttir, A. D.; Polet, M.; Van Eenoo, P.; Nieto, S. 用于反兴奋剂检测的基于 AssayMAP Bravo 样品前处理平台的半自动 GC/Q-TOF 筛查, *安捷伦 科技公司应用简报*,出版号 5994-6702ZHCN, **2023**

